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Abstract 

The work argues the principle of equivalence to be a theorem and not a principle (in the sense of an 

axiom). It contains a detailed analysis of the concepts of normal and intertial frame of reference. The 
equivalence principle is proved to be valid (at every point and along every path) in any gravitational 
theory based on linear connections. Possible generalizations of the equivalence principle are pointed 
out. 
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1. Introduction 

The principle of equivalence played an important role at the early stages of development 
of general relativity [l-.5]. Now, despite historical positions. it is often mentioned as a 
procedure for transferring results from flat space-time(s) to curved one(s) [ 1, Ch. 161. 
Mathematically this is reflected in the minimal coupling principle used to transfer the 
Lagrangian formalism from flat to curved manifolds by replacing the flat metric with the 
(pseudo-)Riemannian one and the usual (partial) derivatives with covariant ones 161. 

The equivalence principle is almost everywhere considered as a statement that cannot be 
proved or need not be proved as it is ‘evident’ from certain positions and whose consequences 
are ‘reasonable enough’ to be taken as a true [4,5]. 
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The present paper asserts the opinion that when the mathematical back-ground of a 
gravitational theory is chosen, then the (strong) equivalence ‘principle’ becomes a theorem 
(true or not) that can be proved. This is in accordance with the conclusions of [3, Section 611. 
There is another case when the equivalence principle is used for selecting the mathematical 
structure of a gravitational theory. In this case it acts primarily as principle (axiom), but 
after this selection is made, it again becomes a theorem. 

In [7] (see also [8, pp. 5, 1601) is recognized the historical role of the equivalence principle 
in general relativity, but its exact contents and importance are put under question. By our 
opinion the latter is a consequence of (some of) the indistinct formulations of this principle 
and the problem is-is it a theorem or an axiom? These problems are solved completely 
in the present work. That takes off some of Synge’s questions. But we do not share his 
mind that the equivalence principle is not important nowadays. He is right that now general 
relativity can be formulated without it. But general relativity is compatible (consistent) with 
the equivalence principle (in a sense that in this theory it is a provable theorem) as it must 
be because this principle reflects important empirical observation. Besides, the significance 
of the principle of equivalence arises (maybe implicitly) in any new gravitational theory as 
only theories compatible with it can survive. 

The present investigation concentrates mainly on the mathematical aspects of the equiv- 
alence principle. A physical discussion of this principle can be found in [5, see in particular, 
pp. 133-137; 4, pp. 334-3381, or in [9, Sections 8.2, 9.61. 

This work is based mainly on [lo-131 and is organized as follows. Section 2 is a brief 
review of the equivalence principle and its mathematical formulation. Section 3 is devoted 
to some mathematical theorems closely connected to the subject of this article. Physical 
conclusions from them are made in Section 4. Section 5 contains remarks about possible 
extensions of the area of validity of the equivalence principle. Appendix A reviews and 
discusses some terminological problems. Appendix B contains certain results concerning 
derivations. Appendix C outlines the proofs of propositions used in this work. 

2. The equivalence principle from physical and mathematical point of view 

Different formulations of the equivalence principle can be found. They state in one or the 
other form that (at a point) in a suitable frame of reference the laws of special and general 
relativity coincide: In [ 1, Ch. 161 it reads: “In any local Lorentz frame at any time and place 
in the Universe all (non-gravitational) physical laws take their special relativity form”. In 
[2], one finds it as the assertion that at any space-time point in arbitrary gravitational field a 
“locally inertial coordinate system can be chosen, in which in a sufficiently small neighbor- 
hood of the point, the Nature laws will have the same form as in non-accelerated Cartesian 
coordinate systems”. In [6] it states that “locally the properties of special relativistic matter 
in a non-inertial frame of reference cannot be distinguished from the properties of the same 
matter in a corresponding gravitational field’. In [9, Section 9.61 the equivalence principle is 
formulated as follows: “at any point all Nature laws, expressed in local Lorentz coordinates, 
have the same form as in special relativity”. 
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In fact, these are formulations of the sfroq equivalence principle which is discussed, for 
instance, in [5, Section 5.21 (see also the references therein). The several weak forms of the 
principle of equivalence are not a subject of the present investigation. 

Above, as well as in other ‘physical’ publications, the concepts ‘local’ and ‘locally’ are not 
well defined from mathematical view-point and often mean an “infinitesimal surrounding 
of a fixed point of space-time” [6]. Their strict meaning may be at a point, along a path 
(curve), in a neighborhood, or on another submanifold (or, generally, subset) of space-time. 
Below we will have in mind just this, every time specifying the particular situation. 

As we saw above, in the equivalence principle is involved a special class of coordinate 
systems or frames (of reference), usually called (local) inertial [2] or (local) Lorentz [ I] 
in the physical literature and normal (and, by some authors. geodesic or Riemannian) in 
the mathematical one [14, Ch. V, Section 31 (see Appendix A). The main property of a 
frame of this class is that in it one can ‘locally’ neglect the effects of gravity (or of the 
accelerated motion of the frame), or, more strictly, that in it the gravitational field strength 
is ‘locally’ transformed to zero (or vanishes). Mathematically this is the corner-stone of the 
equivalence principle: if such frames do not exist it is meaningless, and conversely, if they 
exist it is meaningful, and the problem whether the equivalence principle is a principle (an 
axiom) or a theorem depends on the approach to the concrete theory under consideration 
(see Section 4). 

In all of the gravitational theories known to the author the gravitational tield strength is 
locally identified with the components of a certain linear connection. for instance with the 
Cristoffel symbols formed from the metric (Levi-Cevita’s connection) in general relativity 
[ I .2] or with the coefficients of the Riemann-Cartan connection in the C/4 theory [ 61. Just this 
point connects physics with mathematics here and makes it possible the strict mathematical 
consideration of the above problem. In fact, in this context, the above special frames are 
coordinate systems (or local bases) in which the components of the corresponding linear 
connection locally vanish. 

So, if locally the gravitational field strength is identitied with the local components of a 
linear connection V, then it is meaningful to be spoken about the equivalence principle on 
some subset U of the space-time M if and only if in (a neighborhood of) U exist frames 
(coordinates, bases) in which the connection’s components vanish on U. Thus there arises 
the mathematical problem for finding, if any, the linear connections V on the set U and the 
coordinates. called normal, in a neighborhood of U in which the components of V vanish 
on U. To the author are known the following basic results on this problem. 

According to [ 14, Ch. V, Section 31 the existence of normal coordinates at a point (U = 
(xg]. xg E M) for symmetric linear connection has been proved at first in [ 151. In 1922 
Fermi [ 161 proved the existence of normal coordinates along any curve without self- 
intersections in the pseudo-Riemannian manifold of the general relativity. In many textbooks 
(see. e.g.. [ 14,171) it is proved that for symmetric linear connections normal coordinates exist 
in a neighborhood iff the connection is hat in it. The general case for symmetric linear con- 
nections is investigated in [ 181 where necessary and sufficient conditions for the existence 
of normal coordinates on submanifolds were found. All these results concern torsion free. 
i.e. symmetric, linear connections. In the cooresponding works it is also mentioned that for 
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non-symmetric linear connections there are no normal coordinates (more precisely, holo- 
nomic normal coordinates do not exist). It seems that in [6], in fact without proof, the 
existence of anholonomic normal coordinates at a point for non-symmetric linear connec- 
tions was mentioned for the first time. In 1992, in [ 1 l] and in [ 121 the existence of generally 
anholonomic local normal coordinates, called there special bases, was proved at a point and 
along a path, respectively, not only for any linear connection but also for arbitrary deriva- 
tions of the tensor algebra over a differentiable manifold. The work [ 1 I] among others deals 
with the problem in a neighborhood: the sought for (anholonomic) normal coordinates exist 
only in the flat case (zero curvature of the derivation or connection). The paper [ 131 con- 
tains necessary and/or sufficient conditions for existence, holonomicity, and uniqueness of 
normal coordinates (special bases) on sufficiently general subsets of a differentiable man- 
ifold for arbitary derivations of the tensor algebra over it that, in particular, may be linear 
connections. In 1995 in [19] (independent of [ 111) the existence of anholonomic normal 
coordinates (frames) at a point was proved for linear connections with torsion, a result which 
is a very special case of the ones of [ 131 or [ 111. 

The cited results, some of which will be discussed in the next section, are the strict 
mathematical base for analyzing the equivalence principle. 

3. On the general existence of normal coordinates 

As we have said in Section 2, the problems connected with the existence (and uniqueness) 
or normal coordinates for symmetric linear connections were more or less completely 
investigated in [ 15,16,18]. In [ lo-131 analogous problems were studied in the case of 
arbitrary derivations of the tensor algebra over a differentiable manifold. In particular these 
derivations can be covariant differentiations (linear connections) with or without torsion. 
Thus, these works, a brief review of which is presented below, incorporate as their special 
cases the above cited ones concerning torsion free linear connections. 

Any (S-) derivation of the tensor algebra over a manifold M is a map D : X H Dx = 
Lx + SX, where X is a vector field, Lx is the Lie derivative along X, and Sx is (depending 
on X) tensor field of type ( 1, 1) considered here as derivation [ 11,201. 

If {E; ) is a field of vector bases in the tangent to M bundle, then the coeficients ( Wx); 
of D are defined, e.g., through 

Dx(Ej) = (Wx)iE;. (3.1) 

Here and below all Latin indices run from 1 to dim(M) and summation from 1 to dim(M) 
over repeated indices on different levels is assumed. 

Let Wx : = [( Wx)j] be the matrix formed from the coefficients ( W,Y.)~ of D. The change 

{ Ei ) + (El : = A{ Ej ) of the basic vector fields induces 

Wx --f W; = A-‘(WxA + X(A)) (3.2) 

with A : = [Aj] and X(A) being the action of X on A, i.e. X(A) = [X(Aj] = [XkEk(Aj)]. 
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From (3.1) or (3.2) it is evident that D is a covariant differentiation V with (local) 
coefficients f/k in (Ei] iff (WX,; = rjkX”. i.e. if WX depends linearly on X. In general, 
D is said to be linear on (in) U C M or along a map q : Q + M for some set Q if in some 
basis (and hence in all bases) {E;} the relation WX(X) = fk (_,)Xk(x) is fulfilled for some 
matrix functions rk and x E U or x E q(Q), respectively. 

The (operators of) curvature RD and torsion T” of a derivation D are. respectively, 
R”(X. Y) : = DX o Dy - Dy o DX - D[X,YI and TD(X, Y): = DxY - DyX - [X. Y] for 
any vector fields X and Y, [X, Y] being their commutator. 

Now the problem interesting for us has the following formulation. Let there be given 
a subset U C M. There have to be found all derivations D and the corresponding fields 
of bases {E;]. defined on U or on a neighborhood of U, in which the components of D 
vanish on U. i.e. WX(X) = 0 for .IC E CT. If such bases (frames) exist, we call them nor-nznl 
buses (resp. normal,frumes) for D (on U). Here and below we prefer to speak about normal 
bases (or frames) instead of normal coordinates because these bases (frames) are generally 
anholonomic, i.e. in the usual sense (holonomic or integrable) coordinates with the needed 
property do not exist and one has every time, when mentioning them, to add the appropriate 
adjective ‘anholonomic’ or ‘holonomic’. 

Now we shall present some basic results from [ 1 O-l 3 ] concerning the existence, unique- 
ness. and holonomicity of normal frames. 

In neighborhoods the following results are valid [ 10.1 11: 

Proposition 3.1. In u neighborhood U C M there exists u normul frame for a derivation 
D #it is n,fiut linear connection or #it is,flat (RD = 0) und D,y(x=o = 0 in U. 

Proposition 3.2. The normal bases in U,fiw D, if crny are connected by (homogeneous) lin- 
ear transformations with constant coefJicients and ure holonomic (unholonomic) $fT” = 0 
(resp. TD # 0) in U. 

Hence the flat (in U) linear connections are the only derivations for which there exist 
normal bases in neighborhoods. These frames are holonomic iff the connection is symmetric 
(torsion free). 

At a given point our problem is solved by [ lo,1 I]: 

Proposition 3.3. At a point x0 E M there e.xists a normal frame,for u derivution D $ D is 
lineur at x0. 

Proposition 3.4. The normal bases for D, at x0, if any, are connected by linear transfor- 
mations whose matrices vanish at x0 under the action of the normal basic,fields, und the> 
ure holonomic iff D is torsion free at .x0. 

As a linear connection is, evidently, a linear at (every) x0 derivation, the last two proposi- 
tions contain as a special case the hypothesis formulated in [6] as well as its strict formulation 
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and proof in [ 191: any linear connection admits normal frames at every fixed point which 
are holonomic iff it is symmetric. 

Along an arbitrary path y : J + M, J being a real interval, the following propositions 
are fulfilled [ 121: 

Proposition 3.5. Along y (i.e. on y(J)) there exists a normal basis,for a derivation D $ 
D is linear along y (i.e. on y(J)). 

Proposition 3.6. The normal along y bases for D, if any, are connected through linear 
transformations whose matrices vanish along y under the action of the normal basic$elds. 
[f they are holonomic, then D is torsion free on y(J) and, conversely, if0 is torsion free on 
y(J) and there is a smooth normal basis along y, then all of them are holonomic. 

As a linear connection V is a derivation linear along any path, we see that any linear 
connection admits normal frames along every fixed path. If there is a holonomic basis for 
V normal along y, then V is symmetric, and if V is symmetric and there is a normal basis 
for it, smooth along y, then all such bases are holonomic. In particular, for symmetric V 
and paths without self-intersections we get in this way the classical result of [ 161. 

If one is interested of derivations along paths (see the definition in [ 12, Section III]), 
there always exist holonomic, as well as anholonomic normal bases along any path y. In 
particular, this is true for the covariant differentiation Vj, along y corresponding to a linear 
connection V (p is the tangent to y vector field). 

The general situation concerning normal bases is the following [ 131. 

Proposition 3.7. If on the set U C M there exists a normal basis,for a derivation D, then 
D is linear on U. 

But the opposite to this proposition is generally not valid (cf., e.g., Proposition 3.1). 

Proposition 3.8. In a set U the normal bases for D, ifany, are connected by linear transfk- 
mations whose matrices vanish on U under the action of these normal basic vectorjelds. If 
there is such a holonomic basis, then D is torsion free on U and, conversely, if D is torsion 
free on U and there is in U a smooth normal basis for D, then all normal in U bases,for D 
are holonomic. 

Theorem 4 of [ 131 expresses a necessary and sufficient condition for existence of normal 
bases (frames) for linear derivations along maps with separable points of self-intersection. 
In particular it covers the case of arbitrary submanifolds of the space-time and the case of ar- 
bitrary linear connections, thus generalizing the results of [ 181. Here we shall mention only 
the following corollary of this theorem. The zero- and one-dimensional cases are the only 
ones in which normal frame always exist for linear derivations on the corresponding sets 
(see resp. Propositions 3.3 and 3.5). In particular this is true for linear connections. On sub- 
manifolds of dimension p = 2, . . ., dim M (for dim M 12) normal frames exist only as an 
exception in a case when some conditions are fulfilled (for p = dim M, cf. Proposition 3.1). 



B.Z. Iliev/Joumul of Ceometp and Physics 24 (1998) 209-222 215 

4. The equivalence principle: Axiom or theorem? 

It was shown in Section 2 that the equivalence principle is meaningless without a clear and 
strict understanding of what is a local inertial frame. Physically it can be defined as a frame 
in which the gravitational field strength (locally) vanishes. But then the question arises how 
this strength is described mathematically. In all (non-quantum) gravitational theories known 
to the author the gravitational field strength is (locally) identitied with the components of 
some linear connection which leads to the identitication of the class of inertial frames 
with the class of normal frames for this linear connection. Hence, in these theories the 
phyic~~l concept ‘inertial frame ’ coincides with the mathematical concept ‘normul,frrrme ‘. 

in this way also automatically the problem of what ‘local’ (or ‘locally’) strictly means in 
the equivalence principle is solved: it simply means the set(s) on which the corresponding 
normal frame(s) is (are) defined. 

The results of Section 3 imply that normal frames exist not only for linear connections 
but also for more general derivations (which are linear on the corresponding sets). So. 
the equivalence principle can be formulated for theories in which the gravitational tield 
strength is identified with the components of certain derivation of the tensor algebra over 
the space-time. In this case one has to identify the inertial and normal frames too. 

If one wants the normal frames to exist not only on a particular set (e.g. on a given path) 
but also on some class of subsets of the space-time (e.g. on all paths), then he again arrives 
to the case of linear connections if these subsets cover the whole space-time. (In the last 
case by Proposition 3.7 the derivation is linear at any space-time point which means that it 
is a linear connection.) Combining these results with Propositions 3.3 and 3.5 one derives: 

Proposition 4.1. The linear connections (covariant Qferentiations) ure the owly derivrr- 
tions ,fiw which normal bases exist at eve? spuce-time point or/cd along el,ery ptrth irl 
it. 

On other (families of) sets, even for linear connection. normal frames exist only as an 
exception (see. e.g., Proposition 3.1 and [ 131). 

Consequently, if one tries to formulate the equivalence principle he has to suppose that 
the gravitational held strength is identified with the cofficients of some linear connection. 
If this is done, then there exist local inertial frames (= normal frames). 

Until now the ‘first part’ of the equivalence principle was discussed: it concerns inertial 
(normal) frames from mathematical point of view. Its ‘second part’ presupposes the exis- 
tence of inertial frames and states that in them the “non-gravitational physical laws take 
their special relativity form”. But here the question arises: when and in which frames the 
special relativity (and the physical laws in it) is (are) valid‘? 

The answer is: in frames which are not accelerated or in which the gravitational tield 
strength vanishes which, because of the empirical equality between inertial and gravitational 
masses, is one and the same thing [21]. Such frames are called, by definition, inertial too. 
This is not accidental because their class coincides with above-considered class of normal 
frames in which the gravitational field strength vanishes too. Hence, it turns out that by 
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definition, empirically based on the equality of inertial and gravitational masses, the special 
relativity Nature laws are valid in the inertial frames. 

So, what does the equivalence principle state in the end? The existence of inertial frames? 
No, because they are needed for its formulation and the fact of their existence is a conse- 
quence of the theory’s mathematical background. Where are the special relativity laws 
valid? No, because this is either a question of definition: once the special relativity laws 
are established and experimentally checked, one has to extrapolate this fact by mathemati- 
cally describing where they are valid. The above discussion shows that in this context the 
equivalence principle asserts the coincidence of the two types of inertial,frames: the normal 
frames, in which the components of a linear connection (or some other derivation) vanish, 
and the inertial frames, in which special relativit?, is valid. But, as it was demonstrated 
above, this is a consequence of the fact that the gravitational field strength is mathemati- 
cally described by the components of a certain linear connection. Thus, from this position, 
equivalence principle is a theorem. 

It seems that for the first time such a conclusion was made in [3, Section 611 in the case 
of general relativity, where it is asserted that the equivalence principle “is contained in the 
hypotheses of the Riemannian character of space-time and mathematically is expressed in 
the possible introduction of local geodesic (i.e. normal - B.I.) coordinate systems along a 
time-like world line” [3, p. 3071. 

Can the equivalence principle be considered an axiom? Our opinion is that this is also 
possible, but not in its usual formulation(s) (see Section 2). For this purpose the ‘equivalence 
principle’ should be formulated as follows: in any localframe of reference the gravitational 
field strength is described through identifying it with the local coefJicients in this frame 
of a certain linear connection (or another derivation). Implicitly in this statement the 
equality between the inertial and gravitational masses is incorporated which is supposed to 
be valid before the formulation of the usual equivalence principle, which in its turn, as was 
demonstrated above, is a consequence of it. 

5. Can the equivalence principle he generalized? 

In the usual formulation(s) of the equivalence principle the question for its generalization 
does not stand at all: it concerns a single theory (general relativity [ 1,2]) and its validity 
in other theories (such as the U4 gravity theory [6]) was under question until recently. 
Our investigation shows that it is meaningful also in any gravitational theory based on 
linear connections. It is valid in such a theory at every point and along any path. On other 
subsets of the space-time it can be valid only as an exception. One can also formulate 
the equivalence principle in gravitational theories based on derivations more general than 
covariant differentiation. In such theories it can, in general, be valid on particular subsets 
of the space-time. If its validity in them is demanded on the whole space-time, then with 
necessity the corresponding derivation must be a covariant differentiation, i.e. one arrives 
again at a theory based on linear connections. 



B.Z. Niev/Journal of Geometry and Physics 24 (199X) 209-222 217 

In sum, the equivalence principle (in its usual ,formulation(s)) is valid in the whole 
space-time (at any point or along any path) in all gravitational theories based on linear 
connections. (Note that the new formulation of the equivalence principle, presented in the 
end of the Section 4, serves just to select those theories.) 

Further generalizations of the equivalence principle are possible in two directions: by 
generalizing the (mathematical) concept of ‘normal’ frame or by generalizing the description 
of the gravitational interaction (on the base different from the one of linear connections). 

One possible such generalization is outlined in [22]. In it one supposes the tangent to the 
space-time bundle to be endowed with a linear transport along paths, which may not to be a 
parallel transport assigned to a linear connection. (For the general theory of such transports - 
see [23].) The gravitational held strength is then identified with the transport’s coefficients. 
(The gravitational held itself can be described through the transport or its curvature.) Define 
the class of the normal frames to be the one of all bases (frames) in which the transport’s 
coefficients vanish along an arbitrary given path. The so-defined normal frames always exist 
along any path or at any point (which is a degenerate path). In such a gravitational theory. 
which will be studied elsewhere. the equivalence principle is valid, for instance, in any 
of its formulations given is Section 2. Due to the equivalence established in 1231 between 
linear transports along paths (generally in vector bundles) and derivations along paths. the 
sketched base for a possible gravitational theory can be formulated (equivalently) in terms 
of derivations along paths. Evidently. in such terms it is a straightforward generalization of 
the theories based on linear connections. 

Another way for generalizing the equivalence principle is to extend the ‘physical’ area of 
its validity, i.e. to apply it to fields different from the gravitational one (cf. [24]). The reason 
for such possibility is the fact that the gauge (Yang-Mills) fields are from mathematical view- 
point linear connections (on vector bundles). This suggests the idea for such a formulation 
of the equivalence principle that it concerns all fields (interactions) described by means of 
gauge theories. 

Appendix A. Normal, geodesic, Lorentz, and inertial frames 

We called normal a special kind of local bases, frames, or coordinates investigated in the 
present paper. This needs some explanations. 

For symmetric linear connections the local coordinates in which their components van- 
ish at a given point are called normal in [ 14. Ch. V, Section 31 or in [ 1, Section I 1.61. 
In [20, Ch. III, Section 81 and in [S, p. 2781 the local coordinates normal at a point, 
introduced there via the exponential map, for any linear connection (symmetric or not) 
are defined as such for which the symmetric part of the connection’s components van- 
ish at this point. Evidently, the latter definition includes the former one as a special case. 
Note that both the definitions originate from the consideration of the equation of geodesic 
lines [5,14,20]. This is the primary reason to call these local coordinates geodesic (or 
Riemannian. or normal Riemannian [ 1, Section 1 I S]) in the special case of a Riemannian 
manifold 13. Section 42, p. 2011, where they are (some times) equivalently introduced via 



218 B.Z. Iliev/Journal of Geometry and Physics 24 (1998) 209-222 

the condition that in them the partial derivatives of the metric’s components vanish at a given 
point [3, Section 421. 

The case of a symmetric linear connection is investigated in [17, Ch. III, Section 7, 
pp. 156-1581 (see the references therein too). A distinction between geodesic and normal 
at a point local coordinates has been made. Geodesic coordinates are called the ones in 
which at that point vanish the connection’s components and normal coordinates are called 
the geodesic ones satisfying at the given point Eq. (7.23) of [ 17, Ch. III, Section 71 which, 
in particular, implies the vanishing at that point of the connection’s components together 
with their symmetrized partial derivatives. (Note that the possibility for the existence of the 
last type of coordinates is ensured by our (non-) uniqueness result expressed by Proposition 
3.4 with which is compatible the mentioned equation.) Analogous opinion is shared in [8, 
pp. 13-141. 

It is known that the symmetric part of the connection symbols of arbitrary linear con- 
nection V are directly connected with the equation of geodesic lines (curves, paths) and 
uniquely determine them [ 17,201. By our opinion, this suggests the following convenient 
convention. Call normal or resp. geodesic on a set U a local coordinate system (basis, or 
frame), defined in a neighborhood of U, in which the local components of V or resp. their 
symmetric pats vanish on U. Thus in the torsion free case the concepts of normal and 
geodesic coordinate system coincide. Generally a normal frame is geodesic, the converse 
being not valid. In this sense, the normal coordinates described in [ 17, p. 1581 are a special 
type of (our) normal coordinates, specified by the additional conditions described in this 
reference consistent with Proposition 3.4. Note that the proposed definition is in accordance 
with the special one used in [ 191. 

If one adopts the suggested convention, then the generalization from linear connections to 
arbitrary derivations D of the tensor algebra over a manifold is evident: only the concept of a 
normal frame is applicable because, generally, some symmetry properties of the coefficients 
of D cannot be spoken about. This explains the terminology accepted in the present paper. 

Let us mention that the so-defined normal bases for D in CJ have a connection with a 
kind of generalized geodesic lines correspondig to D (cf. [25]) which will be discussed 
elsewhere. 

In the physical literature, contrary to the mathematical one, there is a unique under- 
standing what local inertial and Lorentz frames are. A local Lorentz coordinate system is 
defined for the (pseudo-)Riemannian space-time of general relativity as a one in which 
at a given point (or another set) the metric tensor coincides with the Minkowski metric 
tensor and all partial derivatives of the metrical components are zeros at this point (see, 
e.g., [l, Sections 8.5, 8.6, 13.61 or [9, Section 9.61). (Note that this definition admits an 
evident generalization to arbitrary (pseudo-) Riemannian manifolds: only the Minkowski 
metric tensor has to be replaced with arbitrary fixed tensor.) A local inertial frame (of ref- 
erence) at a given point (or another set) is defined as a one in which at this point (or an 
other set) the gravitational effects (or more precisely, the gravitational field strength) van- 
ish (see [ 1, Sections 1.3, I .6] or [9, Section 9.61). When the gravitational field strength is 
identified with the local components of some linear connection, which is the usual situation 
[ 1,3,6,9], this means the vanishing of the connection’s components at the given point. In 
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general relativity this leads to the fact that any local Lorentz system is a local inertial frame 
[ 1, Section 13.31. 

Thus, if the gravitational field strength is locally identified with the local components 
of some derivation D, then only the concept of a local inertial frame survives. Besides. if 
(maybe independently) a metric is presented then there also arises the class of local Lorentz 
frames: of such a type are the metric-affine gravitational theories. Generally. these types of 
frames, if both exist, need not be connected somehow with each other. 

Appendix B. On derivations of the tensor algebra over a manifold 

A derivation of the tensor algebra I(M) over a differentiable manifold M is a linear 
map D : 7(M) -+ ‘T(M) which satisfies the Leibnitz differentiation rule with respect to 
the tensor product, preserves the tensor’s type, and commutes with the contractions of the 
tensor fields [20, Ch. I, Section 31. By [20, Ch. I, Proposition 3.31 any D admits a unique 
representation in the form D = LX + S for some (unique for a given D) vector field X and 
tensor field S of type (I, 1). Here S is considered a derivation of I(M) 1201, which for a 
covariant differentiation V is given through SX( Y) = VX( Y) - [X, Y], Y being a vector 
field. 

Let (Ei , i = I, . . . II := dim(M)] be a (coordinate or not [ 171) local basis (frame) 
of vector fields in the tangent to M bundle. It is holonomic (anholonomic) if the vectors 
Et. . . E, commute (do not commute) [17]. Let T be a C’ tensor field of type (p. y). 17 

and q being integers or zero(s), with local components $,‘,:.ii with respect to the tensor 
basis associated with {Ei). Here and below all Latin indices. maybe with some super- or 
subscripts, run from 1 to n:= dim(M). Using the explicit action of LX and SX on tensor 
fields [20] and the usual summation rule about repeated indices on different levels we find 
the components of DxT to be 

Here X( ,f) denotes the action of X = X’ Ei on the C’ scalar function ,f’. i.e. X( ,f’) = 
Xk Ek(.f). and the explicit form of Wx (cf. (3.1)) is 

(Wx)j = (&)j - E,(X’) + CijXk. (B.2) 

where Ckj define the commutators of the basic vector fields by [ Ej, Ek] = C,;,! E;. 
From (B.2) or from (3.1) follows Eq. (3.2). 
Using the equation Dx = LX + SX. one finds the followings representations for the 

curvature and torsion operators: 
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RD(X, Y) = sx 0 Sy - Sy 0 sx + [X, Sy.] - [Y, Sx.] 

+ Sx([Y, .I) - SY([X, .I) - SlX,Y]t 

TD(X, Y) = Sx(Y) - Sy(X) + [X, Yl. 

We have the local expressions: 

[(RD(X, Y))jl= X(WY) - Y(Wx) + WXWY - WYWX - W[X.Y]. (B.3) 

@(X. Y))’ = (Wx,jYj - (Wy)jXj - Cj,XjY”. (B.4) 

respectively. Foralinearconnection V is fulfilled (R”(X, Y)): = Rjk,XkY’ and (T’(X, Y))’ 

= T,‘,Xk Y’ where Rj,, and T,‘, are the components of the usual curvature and torsion tensors, 
respectively [ 17,201. 

Other general results concerning derivations can be found in [20]. 

Appendix C. Sketch of some proofs 

Propositions 3.1-3.8 are the strict mathematical basis for our analysis of the equivalence 
principle. Their full proofs can be found in [lo-l 31. Below are presented the main aspects 
of them. 

Proof of Proposition 3.7. Let { E( = A! Ej ) be a normal frame for D in U. Then W(y 1” = 0 
which by (3.2) is equivalent to WX(X) = fk(x)Xk(x), x E U with rk = -(,!?k(A))A-‘, 
A = [A;]. 0 

The first parts (necessity) of Propositions 3.1,3.3 and 3.5 are corollaries from Proposition 
3.7 when U is a neighborhood, or a point, or path, respectively. (Nore that in the first case 
WX = -(X(A))A-’ implies RD = 0 due to (B.3).) 

Proof of Proposition 3. I (sufJiciency). For a flat linear connection one can construct normal 
bases by fixing some basis at an arbitrary point and then transporting it to any point of lJ 
by means of the parallel transport generated by that connection. 0 

Proof of Proposition 3.3 (su$iciency). A local holonomic frame (Ei = A/ a/aj 1 at a point 
x0 can be constructed by choosing the coordinates (x’ ) such that X = a/ax ’ (# 0 at x0) 
and putting A(z) = 1 + Ck(Xk(z) - ~~(,a)), where 1 is the unit matrix and the matrices 
Ck are partially fixed through the conditions (Ck); = (Cj); E [w and Cl = WX. 0 

Proof qf Propostion 3.5 (suficienc.~). Let the path y : J + M be without self-intersections 
and be contained in only one coordinate neighborhood. Let V := J x . ‘. x J, where 
J is taken n - 1 times. Let us fix a one-to-one C’ map rI : J x V + M such that 
n(., ~JJ) = y for some fixed GJ E V, i.e. ~(s, to) = v(s), s E J. (This is possible iff 
y is without self-intersections.) In U n q(J, V) we introduce coordinates (x’) by putting 
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(x’(q(s. t)). . , x”(q(s, t))) = (s. t). s E J, t E V. (This. again, is possible iffy is with- 
out self-intersections.) Let WX(y(s)) = rk(Y(s))Xk(Y(s)), .Y E J. Then all normal along 
Y frames {El = A/a/dx.‘} are described by the matrix 

+&/CT. t; r/)[.uX(q(s. t)) - X%](S. to))] 

x L&CT. t)) - x’(q(s. to))]. (C.1) 

Here 1 is the unit matrix, so E J is fixed, B is any non-degenerate matrix function of its 
arguments. the matrix functions Bkl are such that they and their first derivatives are bounded 
when t -+ to, and Y = Y(s, SO; Z), with Z being a continous matrix function of s. is the 
unique solution of the matrix initial-value problem [26. Ch. IV, Section I ] 

dY 
- = ZY, 
ds 

YI,=,,, = 1. Y = Y(s. .rn: Z). 

In the case when y has self-intersections and/or is not contained in only one coordinate 
neighborhood the frames normal along y are constructed from the ones for the pieces of y 
satisfying the conditions at the beginning of this proof. 0 

Proof of Proposition 3.8 ($rst part). If (E;} and (E: = A/ Ei] are normal in CJ, then 
Wxlu = W;,I[, = 0, which by (3.2) means that X(A)10 = 0. i.e. E,(A)(c) = 0 as X 

is arbitrary. Conversely, if [ Ei} is normal in U, i.e. WX I(/ = 0, and El = Al Ei with 
Ei(A)ll/ = 0. then, again by (3.2), we get W,!J, = 0, i.e. (~5:) is normal in U. r? 

If we specify U to be neighborhood. or a point. or a curve (i.e. the set y(J)). then 
from the first part of Proposition 3.X follow the first parts of Propositions 3.2. 3.4. and 
3.6. respectively. Analogously, their second parts are corollaries from the second part of 
Proposition 3.8. 

Proof of Proposition 3.8 (second part). If (I$} is a normal frame in U, then Wi 10 = 0 

which, due to (B.4). implies TD(E,!. Ej)lr, = -[E:. E,;]l[,. So, the holonomicity condition 

((El. E;]lci = 0 is equivalent to TD]u = 0. 0 

The considered propositions can be proved also independently, which is done in the 
above-cited references, where other details and results can be found. 
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